Exact Answers versus Rounded Answers: Consider the solution $x = \pm \sqrt{a}$

KEY

4

9

16 25 36

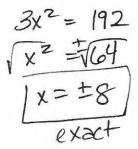
49

61 81

100

- 1. If a is a perfect square, take the square root and the solution is an exact integer.
- 2. If a is not a perfect square, leave in simplified radical form and the solution is exact.
- 3. If a is not a perfect square, take the square root and the solution is a rounded answer.

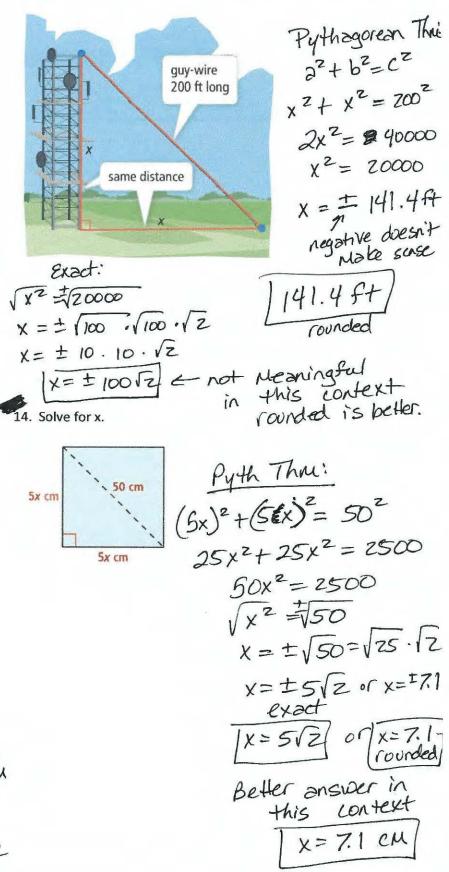
Pay attention to whether you are supposed to give exact answers (either integers or simplified radical form) or rounded answers.


Examples: Solve and give both the exact answer and the rounded answer.

1. $x^2 = 49$ 2. $x^2 = -121$ $\sqrt{x^2} = \sqrt[4]{-121}$ $x = \pm 11i$ [No real answer $x = \pm 7$ exact

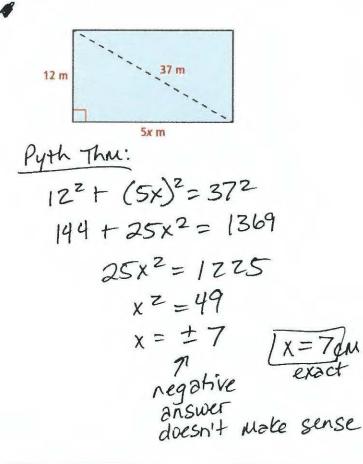
3.
$$x^{2} = 169$$

 $\sqrt{\chi^{2}} = \frac{1}{169}$
 $\chi = \pm 13$ exact
 $\chi = \pm 13$ exact
 $\chi = \pm 4i$ No real answer


5.
$$x^{2} = 300$$

 $\sqrt{x^{2}} = \frac{1}{300}$
 $x = \pm \sqrt{300} = \pm \sqrt{3} \cdot 100$
 $= \frac{1}{5} \frac{10}{3} = \frac{17.32}{7.32}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $= \frac{1}{5} \sqrt{2} \cdot \frac{1}{5} \cdot \sqrt{2}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{252} = \sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7}$
 $x = \pm \sqrt{72} = \pm \sqrt{36} \cdot \sqrt{2}$
 $x = \pm \sqrt{72} = \pm \sqrt{36} \cdot \sqrt{2}$
 $x^{2} = 9$
 $x^{2} = 9$
 $x^{2} = 9$
 $x^{2} = 9$
 $x^{2} = 4$
 $x^{2} = 4$

11. $3x^2 + 17 = 209$



12.

A cell phone tower has a guy-wire for support as shown. The height of the tower and the distance from the tower to where the guy-wire is secured on the ground are the same distance. What is the height of the tower?

13. Solve for x.

